INFLUENCIA DE LA LUZ EN LA FOTOSINTESIS Y CRECIMIENTO DE LAS PLANTAS

NO SE OLVIDEN LA EXPERIENCIA ESTA A CARGO DE UDS. CON LOS PARAMETROS QUE SE INDICAROS; SERAN EXPUESTOS EL DIA DEL LOGRO

IMPRIMIR PARA SUS CUADERNOS:FOTOSINTESIS

FASE LUMINOSA
1) Fase luminosa: en el tilacoide en ella se producen transferencias de electrones. Los hechos que ocurren en la fase luminosa de la fotosíntesis se pueden resumir en estos puntos:
a) Síntesis de ATP o fotofosforilación que puede ser:
    - acíclica o abierta
    -  cíclica o cerrada
 b) Síntesis de poder reductor NADPH
2) Fotólisis del agua



Los pigmentos presentes en los tilacoides de los cloroplastos se encuentran organizados en fotosistemas (conjuntos funcionales formados por más de 200 moléculas de pigmentos); la luz captada en ellos por pigmentos que hacen de antena, es llevada hasta la molécula de "clorofila diana" que es la molécula que se oxida al liberar un electrón, que es el que irá pasando por una serie de transportadores, en cuyo recorrido liberará la energía.
Existen dos tipos de fotosistemas, el fotosistema I (FSI), está asociado a moléculas de clorofila que absorben a longitudes de ondas largas (700 nm)y se conoce como P700. El fotosistema II (FSII), está asociado a moléculas de clorofila que absorben a 680 nm. por eso se denomina P680.
La luz es recibida en el FSII por la clorofila P680 que se oxida al liberar un electrón que asciende a un nivel superior de energía; ese electrón es recogido por una sustancia aceptor de electrones que se reduce, la Plastoquinona (PQ) y desde ésta va pasando a lo largo de una cadena transportadora de electrones, entre los que están varios citocromos (cyt b/f) y así llega hasta la plastocianina (PC) que se los cederá a moléculas de clorofila del FSI.
En el descenso por esta cadena, con oxidación y reducción en cada paso, el electrón va liberando la energía que tenía en exceso; energía que se utiliza para bombear protones de hidrógeno desde el estroma hasta el interior de los tilacoides, generando un gradiente electroquímico de protones. Estos protones vuelven al estroma a través de la ATP-asa y se originan moléculas de ATP.
El fotosistema II se reduce al recibir electrones procedentes de una molécula de H2O, que también por acción de la luz, se descompone en hidrógeno y oxígeno, en el proceso llamado fotólisis del H2O. De este modo se puede mantener un flujo continuo de electrones desde el agua hacia el fotosistema II y de éste al fotosistema I.




Los dos fotosistemas pueden actuar conjuntamente frac34; proceso conocido comoesquema en Zfrac34; para producir la fotofosforilación(obtención de ATP) o hacerlo solamente el fotosistema I; se diferencia entonces entrefosforilación no cíclica o acíclica cuando actúan los dos, y fotofosforilación cíclica, cuando actúa el fotosistema I únicamente. En la fotofosforilación acíclica se obtiene ATP y se reduce el NADP+ a NADPH , mientras que en la fotofosforilación cíclicaúnicamente se obtiene ATP y no se libera oxígeno.

Mientras la luz llega a los fotosistemas, se mantiene un flujo de electrones desde el agua al fotosistema II, de éste al fotosistema I, hasta llegar el NADP+ que los recoge; ésta pequeña corriente eléctrica es la que mantiene el ciclo de la vida.